3.1.68 \(\int \frac {1}{x \sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [68]

3.1.68.1 Optimal result
3.1.68.2 Mathematica [C] (verified)
3.1.68.3 Rubi [A] (verified)
3.1.68.4 Maple [B] (verified)
3.1.68.5 Fricas [F(-1)]
3.1.68.6 Sympy [F]
3.1.68.7 Maxima [F]
3.1.68.8 Giac [F(-1)]
3.1.68.9 Mupad [F(-1)]

3.1.68.1 Optimal result

Integrand size = 27, antiderivative size = 330 \[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {f \left (e+\sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d} \]

output
-arctanh((c*x^2+a)^(1/2)/a^(1/2))/d/a^(1/2)+1/2*f*arctanh(1/2*(2*a*f-c*x*( 
e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4 
*d*f+e^2)^(1/2)))^(1/2))*(e+(-4*d*f+e^2)^(1/2))/d*2^(1/2)/(-4*d*f+e^2)^(1/ 
2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)-1/2*f*arctanh(1/2*(2 
*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2 
*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*(e-(-4*d*f+e^2)^(1/2))/d*2^(1/2)/(-4*d* 
f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
 
3.1.68.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.31 (sec) , antiderivative size = 236, normalized size of antiderivative = 0.72 \[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {\frac {2 \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a}}-\text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-a \sqrt {c} e-4 c d \text {$\#$1}+2 a f \text {$\#$1}+3 \sqrt {c} e \text {$\#$1}^2-2 f \text {$\#$1}^3}\&\right ]}{d} \]

input
Integrate[1/(x*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
((2*ArcTanh[(Sqrt[c]*x - Sqrt[a + c*x^2])/Sqrt[a]])/Sqrt[a] - RootSum[a^2* 
f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 
 & , (a*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*Sqrt[c]*e*Log[-(Sqr 
t[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] 
- #1]*#1^2)/(-(a*Sqrt[c]*e) - 4*c*d*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f 
*#1^3) & ])/d
 
3.1.68.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {-e-f x}{d \sqrt {a+c x^2} \left (d+e x+f x^2\right )}+\frac {1}{d x \sqrt {a+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {f \left (\sqrt {e^2-4 d f}+e\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d}\)

input
Int[1/(x*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
(f*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/( 
Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x 
^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt 
[e^2 - 4*d*f])]) - (f*(e - Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt 
[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4* 
d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e 
^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]/(Sq 
rt[a]*d)
 

3.1.68.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.1.68.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(680\) vs. \(2(287)=574\).

Time = 0.67 (sec) , antiderivative size = 681, normalized size of antiderivative = 2.06

method result size
default \(\frac {4 f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {a}}-\frac {2 f \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {2 f \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}\) \(681\)

input
int(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a^(1/2)*ln((2*a+2*a^(1/ 
2)*(c*x^2+a)^(1/2))/x)-2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/ 
2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f 
+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1 
/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2- 
2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+( 
-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2 
)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)) 
-2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1 
/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a 
*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^ 
2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^ 
2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2 
))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2- 
2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))
 
3.1.68.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.1.68.6 Sympy [F]

\[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x \sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate(1/x/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(1/(x*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 
3.1.68.7 Maxima [F]

\[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int { \frac {1}{\sqrt {c x^{2} + a} {\left (f x^{2} + e x + d\right )} x} \,d x } \]

input
integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)*x), x)
 
3.1.68.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.1.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x\,\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int(1/(x*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 
output
int(1/(x*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)